
Journal of Applied Mechanics and Technical Physics, Vol. 44, No. 1, pp. 102–108, 2003

DETERMINATION OF TEMPERATURE DUE TO SLIP

BETWEEN THE WHEEL AND THE RAIL TAKING

INTO ACCOUNT CONVECTIVE COOLING OF FREE SURFACES

UDC 536.12:621.891A. A. Evtushenko1 and S. Ya. Matysyak2

A computational algorithm for determining temperature due to slip between the train wheel and the
rail is proposed. The algorithm uses Ling’s solution of the mixed two-dimensional quasisteady-state
thermal-conductivity problem for a half-space heated locally by a fast moving distributed heat flow.
This solution is calculated using the method of piecewise linear approximation by finite functions.
An analytical solution of the problem is obtained for the particular case of uniform distribution of
the frictional heat flow rate. The effect of different forms of heat flow rate distribution and the Biot
number on the rail temperature field is studied.
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Introduction. Friction in the contact area between the wheel and the rail leads to conversion of mechanical
to thermal energy [1]. Frictional heating results in a local temperature rise in the contact area of rubbing bodies
and can bring about changes in the microstructure of the body materials with subsequent failure. To determine the
heating temperature due to slip between the wheel and the rail, Harrison [2] proposed using the results Archard
[3], who obtained a solution of the steady-state thermal-conductivity problem for a half-space whose finite surface
region is heated by a uniformly distributed frictional heat flow. Jaeger [4] assumed that the heated region in the
indicated problem is shaped like a square or a circle.

For the corresponding quasisteady-state thermal-conductivity problem for a half-space heated by a fast
moving linear heat flow, a solution in the form of a convolution integral of the heat flow rate and a kernel with a
root singularity was obtained by Ling and Mow [5] using an integral Fourier transform. Tanvir [6] and Knothe and
Liebelt [7] studied the case of elliptic distribution of frictional heat flow rate proportional to Hertz contact pressure
using an integral Laplace transform. Evtushenko and Semerak [8] solved the problem by approximate integration
using piecewise linear functions.

In all studies cited above, it was assumed that the surface of the half-space outside the heating region was
heat insulated. The goal of the present study is to obtain a solution of the Ling thermal problem [5] for an arbitrary
heat flow rate taking into account convective cooling of the free surface of the half-space and to simulate the thermal
regime of the wheel-rail tribosystem.

1. Formulation of the Problem. We consider a circular cylinder of radius R (wheel) which moves
uniformly with translational velocity V over the surface of a half-space (rail) (Fig. 1). The cylinder is pressed into
the half-space surface by linear force P . In the contact area between the wheel and the rail, slippage with velocity Vs

leads to heat generation in the form of heat flows directed into the wheel and the rail. Assuming that the heat
flow distribution coefficient is known [9], we consider the temperature distribution in the rail due to friction. To
this end, we use a Cartesian coordinate system xy rigidly attached to the leading edge of the wheel. The following
assumptions are adopted:
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Fig. 1

— the length 2a of the contact area is small compared to the wheel radius R;
— for creep varying in the range 0.1% < s < 2% (macroslip), the slip velocity Vs is equal to [6]

Vs = sV ; (1)

— the rail surface is heated by a fast moving distributed heat flow [10], whose gradient in the slip direction
is negligible compared to the gradient in the transverse direction;

— the frictional heat flow rate q is proportional to the friction power:

q(x) = γfVsp(x), 0 6 x 6 2a

where p is the contact pressure, f is the friction coefficient, and γ is the heat flow distribution coefficient;
— convective cooling of the rail surface occurs outside the heating region;
— the temperature state of the rail in the Euler coordinates xy is steady-state;
— the thermal properties of the rail material are constant.
Under the above assumptions, the thermal problem for the rail reduces to the following quasisteady-state

thermal-conductivity problem for the half-space:

∂2T

∂η2
=
∂T

∂ξ
, −∞ < ξ <∞, 0 6 η <∞,

(2)
∂T

∂η
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=
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hd

K
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x

2a
, η =

y

d
, (3)

T is the temperature, K and k are thermal conductivity and thermal diffusivity, respectively, h is the heat-transfer
coefficient, d is the effective heating depth in the corresponding unsteady thermal-conductivity problem [7], and p0

is the maximum pressure in the two-dimensional analog of Hertz’s problem [11].
2. Method of Solution. The solution of the quasisteady-state thermal conductivity problem (2) for

arbitrary distribution of the dimensionless contact pressure p∗ = p/p0 is written in the form [5]

T (ξ, η) = TmaxT
∗(ξ, η), −∞ < ξ <∞, 0 6 η <∞,

where

T ∗(ξ, η) =
2
π

b∫
0

p∗(τ)G(ξ − τ, η) dτ −H(ξ − 1)
Bi√
π

ξ∫
b

T ∗(λ)G(ξ − λ, η) dλ; (4)

G(ξ, η) =
e−η

2/(4ξ)

√
ξ

, b =


0, −∞ < ξ 6 0,
ξ, 0 6 ξ 6 1,
1, 1 6 ξ <∞,

(5)
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H(·) is the unit Heaviside function, T ∗(λ) ≡ T ∗(λ, 0) and Tmax = Λ
√
π/2 is the maximum temperature at the point

ξ = 1 at the exit from the contact area in the case of uniform contact pressure distribution [8]

p(x) = πp0/4, 0 6 x 6 2a (6)

and heat insulation of the rail surfaces outside the friction region, i.e., at h = 0 (Bi = 0).
To calculate the integrals on the right side of solution (4), we employ the method of piecewise linear approx-

imation by finite functions: [12]. Let us introduce a uniform mesh on the integration interval [0, b]:

0 = τ0 < τ1 < . . . < τn−1 < τn = b, τi = iδτ, δτ = b/n, i = 0, 1, . . . , n.

Each node τi is put in correspondence to a “cover function”:

ϕ0(τ) =
{

(τ1 − τ)/(δτ), τ ∈ [τ0, τ1],
0, τ /∈ [τ0, τ1],

ϕn(τ) =
{

(τ − τn−1)/(δτ), τ ∈ [τn−1, τn],
0, τ /∈ [τn−1, τn],

(7)

ϕi(τ) =


(τ − τi−1)/(δτ), τ ∈ [τi−1, τi],
(τi+1 − τ)/(δτ), τ ∈ [τi, τi+1],

0, τ /∈ [τi−1, τi+1],
i = 1, 2, . . . , n− 1.

The dimensionless contact pressure p∗(τ) is approximated by means of piecewise linear functions (7):

p∗(τ) '
∞∑
i=0

p∗iϕi(τ), p∗ ≡ p∗(τi). (8)

The uniform error of this approximation has order O(δτ2) [13].
Substituting expansion (8) into Eq. (4) for Bi = 0 and integrating, we obtain

T ∗(ξ, η) =
2
πδτ

n∑
i=0

p∗iGi(ξ, η)H(ξ), −∞ < ξ <∞, 0 6 η <∞, (9)

where
G0(ξ, η) = τ1G

(0)
1 (ξ, η)−G(1)

1 (ξ, η), Gn(ξ, η) = G(1)
n (ξ, η)− τn−1G

(0)
n (ξ, η),

Gi(ξ, η) = G
(1)
i (ξ, η)− τi−1G

(0)
i (ξ, η) + τi+1G

(0)
i+1 −G

(1)
i+1(ξ, η), i = 1, 2, . . . , n− 1,

G
(0)
i (ξ, η) = F (0)(ξ − τi, η)− F (0)(ξ − τi−1, η), ξ > τi, i = 1, . . . , n, (10)

G
(1)
i (ξ, η) = F (1)(ξ − τi, η)− F (1)(ξ − τi−1, η) + (η2/6 + ξ)G(0)

i (ξ, η),

F (0)(ξ, η) = −2
√
ξ e−η

2/(4ξ)−η
√
π erf (0.5η/

√
ξ), F (1)(ξ, η) = 2ξ

√
ξ e−η

2/(4ξ) /3

[erf (·) is an error function].
The dimensionless surface temperature T ∗(λ) (λ > 1) in the second term of the right side of the integral

equation (4)is written as

T ∗(λ) '
m∑
j=0

T ∗j ϕj(λ), T ∗j ≡ T ∗(λj), (11)

where λj = 1 + jδλ (j = 0, 1, . . . ,m,), δλ = (ξ − 1)/m, and ϕi(λ) is the “cover function” (7).
Substitution of expansion (11) taking into account solution (9) into Eq. (4) yields the following system of

linear algebraic equations with a triangular matrix:

T ∗k +
Bi√
π δλ

k∑
j=0

T ∗j Gjk =
2
πδτ

n∑
i=0

p∗iGik, Gjk ≡ Gj(λk, 0), k = 0, 1, . . . ,m. (12)

Solution of system (12) gives the dimensionless surface temperature T ∗j at the nodes λj (j = 0, 1, . . . ,m). Substi-
tuting these values into the integral equation (4), we obtain the dimensionless temperature field in the rail behind
the contact area:

T ∗(ξ, η) =
2
πδτ

n∑
i=0

p∗iGi(ξ, η)− Bi√
π δλ

m∑
j=0

T ∗j Gj(ξ, η), ξ > 1, η > 0. (13)
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3. Uniform Contact Pressure Distribution. We consider the case of a uniform pressure distribution,
typical of heavily loaded friction units [14]. Substituting the dimensionless contact pressure p∗(τ) (6) into Eq. (4)
and integrating the result, we obtain

T (ξ, η) =


0, −∞ < ξ 6 0,

θ(ξ, η), 0 6 ξ 6 1,

θ(ξ, η)− θ(ξ − 1, η)− Bi√
π

ξ∫
1

T ∗(λ)G(ξ − λ, η) dλ, 1 6 ξ <∞,
(14)

where

θ(ξ, η) =
√
ξ e−η

2/(4ξ)−
√

0.5π η erfc (0.5η/
√
ξ), 0 6 η <∞, erfc (·) = 1− erf (·). (15)

From relations (14) it follows that in order to determine the surface temperature T ∗(λ) behind the friction
region ξ > 1, η = 0, it is necessary to solve the Volterra integral equation of the second kind with a weakly singular
kernel:

T ∗(ξ) +
Bi√
π

ξ∫
1

T ∗(λ)√
ξ − λ

dλ = F (ξ), 1 6 ξ <∞, (16)

where F (ξ) =
√
ξ −
√
ξ − 1.

The solution of the integral equation (16) is written in the form [15]

T ∗(ξ) = F (ξ) +

ξ∫
1

R(ξ − τ)F (τ) dτ, 1 6 ξ <∞, (17)

where R is the resolvent:

R(ξ) =
∞∑
n=1

(−Bi
√
ξ)n

ξΓ(n/2)
(18)

[Γ(·) is the gamma function]. For n = 2k, from relation (18) we have

R2k(ξ) =
∞∑
k=1

(Bi2 ξ)k

ξΓ(k)
= Bi2

∞∑
k=1

(Bi2 ξ)k−1

(k − 1)!
= Bi2 eBi2 ξ, (19)

and for n = 2k + 1, taking into account formula 5.2.7.18 of [16], we obtain

R2k+1(ξ) =
∞∑
k=0

(−Bi
√
ξ)2k+1

ξΓ(k + 0.5)
=
−Bi

√
ξ

ξΓ(0.5)
−
∞∑
k=1

(Bi
√
ξ)2k+1

ξΓ(k + 0.5)

= − Bi√
πξ
− Bi2

∞∑
k=0

(Bi
√
ξ)2k+1

Γ(k + 1.5)
= − Bi√

πξ
− Bi2 eBi2 ξ erf (Bi

√
ξ). (20)

Summing relations (19) and (20), we obtain

R(ξ) = −Bi /
√
πξ + Bi2 eBi2 ξ erfc (Bi

√
ξ). (21)

Since the integral in relation (17) with the resolvent (21) cannot be calculated analytically, we use the
asymptotic expansions of the resolvent [17]

R(ξ) ' R̃(ξ) = −Bi /
√
πξ + Bi2(1− 2 Bi ξ/π + Bi2 ξ), Bi

√
ξ � 1; (22)

R(ξ) ' ˜̃R(ξ) = −1/(2 Bi ξ
√
πξ), Bi

√
ξ � 1. (23)

For wheel–rail tribosystems, the width of the contact area is 2a ≈ 0.01 m and the heat-transfer coefficient
is h = 0–200 W/(m2 · K) [17]. Using thermal steady-state constants for steel K = 41 W/(m · K) and k =
9.1 · 10−6 m2/sec, we find that the Biot criterion varies within 0 6 Bi 6 0.15 · 10−2/

√
Vs. According to formula (1),

for translational motion of the wheel at velocity V ≈ 75 m/sec and creep s = 1 %, the slip velocity is Vs ≈
0.75 m/sec. Therefore, the upper bound of the Biot criterion does not exceed 0.01. Numerical study of the behavior
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Fig. 2 Fig. 3

of the resolvent R showed that the absolute error of its approximation using the asymptotic relation (22) does not
exceed 1 % for values of the argument ξ − τ 6 Bi−2.

Thus, the integral on the right side of relation (17) can be evaluated by using the asymptotic expression (22)
for R̃ at 1 6 ξ 6 104. As a result, we find the rail surface temperature behind the contact area

T ∗(ξ) =
√
ξ −

√
ξ − 1− Bi θ1(ξ), 1 < ξ <∞, (24)

where

θ1(ξ) = (1/
√
π)[
√
ξ − 1− 0.5π(ξ − 1) + ξ arcsin

√
1− 1/ξ]− (2/3) Bi[ξ

√
ξ − 1− (ξ − 1)

√
ξ − 1]

+ [Bi2 /(2
√
π)][(ξ − 2)

√
ξ − 1− 0.5π(ξ − 1)2 + ξ2 arcsin

√
1− 1/ξ]

− (2 Bi3 /15)[3− 5ξ + 2ξ2
√
ξ − 2(ξ − 1)2

√
ξ − 1 ]. (25)

Knowing the surface temperature [see (24) and (25)], we find the temperature field at an arbitrary point of
the rail behind the contact area from the relation

T (ξ, η) = θ(ξ, η)− θ(ξ − 1, η)− Bi√
πδλ

m∑
j=0

T ∗j Gj(ξ, η), ξ > 1, η > 0, (26)

where the functions θ and Gj have the form of (15) and (10), respectively.
4. Numerical Analysis and Conclusions. Calculations were performed for the dimensionless tempera-

ture T ∗. The dimensionless initial parameters are the coordinates ξ and η, the Biot criterion Bi, and the numbers n
and m of points of division of the intervals [0; b] and [1; ξ], respectively. The parameters n and m were chosen so as
to reach the required calculation accuracy.

We first study the case of uniform contact pressure distribution (6). Calculations using formulas (14), (15),
and (24)–(26) showed that the temperature behind the contact area decreases with increase in Bi (Fig. 2). The
temperature in the heating region does not depend on the Biot criterion, and its maximum value is reached at the
point ξ = 1 on the rail surface that separates the heating and cooling regions.

For Bi = 0.05, the temperature decreases rapidly with distance from the rail surface (Fig. 3). This process
proceeds fastest above the heating region 0 6 ξ 6 1. In thermal calculations of friction units, an important
characteristic is the effective heating depth [18] , i.e., the distance from the slip surface, on which the temperature
accounts for 5% of the maximum surface temperature. For the sections ξ = 1, 2, and 5, the effective depths is equal
to 3d, 5d, and 7d, respectively, i.e., it increases with distance from the heating region.

Most often, engineering calculations use an elliptic distribution (Hertz’s distribution) of contact pressure [11]

p(x) = p0p
∗(x), p∗(x) =

√
1− ((x− a)/a)2, 0 6 x 6 2a. (27)
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Fig. 4 Fig. 5

Fig. 6

Figure 4 gives a curve of T ∗(ξ) for Bi = 0.01 (solid curves refer to calculations using an elliptic pressure
distribution and dashed curves refer to a uniform contact pressure distribution). Calculations by formulas (12) and
(13) showed that a significant difference in the temperature distributions for relations (6) and (27) is observed only
in the contact area. Behind this area, the corresponding temperatures are practically equal. Therefore, the rail
surface temperature behind the heating region for the elliptic contact pressure distribution (27) can be calculated
using the analytical solution (24), (25), obtained for the case of a uniform pressure distribution (6).

The dependence of the rail surface temperature T ∗ on the Biot criterion is linear (Fig. 5). An insignificant
difference in curves of T ∗(Bi) for the constant (6) (dashed curve) and elliptic (27) (solid curves) contact pressure
distributions is observed only in the immediate vicinity (1.0 6 ξ 6 1.1) of the contact area.

We also studied the effect of rail surface roughness on surface temperature. The distributions of contact
pressure, and hence, the frictional heat flow rate were taken as a superposition of the elliptic and oscillating pressures:

p(x) = p0[
√

1− ((x− a)/a)2 − (1/4) cos (5π(x− a)/a)], 0 6 x 6 2a. (28)

Figure 6a and b shows distributions of the dimensionless elliptic (27) (dashed curve) and oscillating (28)
(solid curves) pressures and the corresponding dimensionless surface temperatures. It should be noted that if
the maximum contact pressures for the indicated distributions differ by approximately 25%, the corresponding
maximum temperatures differ by only 6%. Therefore, the rail surface roughness exerts an effect mainly on the
contact pressure and, to a lesser extent, on the surface temperature.
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